ETE809 – Introduction to Finite Element Method

COURSE OUTLINE

(1) GENERAL

SCHOOL	SCHOOL OF ENGINEERING				
ACADEMIC UNIT	DEPARTMENT OF MATERIALS SCIENCE AND				
	ENGINEERING				
LEVEL OF STUDIES	UNDERGRADUATE				
COURSE CODE	ETE809 SEMESTER 10				
COURSE TITLE	Introduction to Finite Element Method				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHINO HOURS	i.	CREDITS	
Lectures		2		3	
Computational Approaches		1			
Add rows if necessary. The organization of teaching and the teaching methods used are described in detail at (d).					
COURSE TYPE general background, special background, specialized general knowledge, skills development	Specialized general knowledge				
PREREQUISITE COURSES:	NO				
LANGUAGE OF INSTRUCTION	LECTURES IN GREEK, PRESENTATION IN				
and EXAMINATIONS:	ENGLISH/GREEK				
IS THE COURSE OFFERED TO	NO				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	http://ecourse.uoi.gr/enrol/index.php?id=2281				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described. Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

By completing the course, the students are expected to have acquired the following:

Knowledge:

- The fundamental concepts of the Finite Element Method and applications to engineering problem
- the ability to recognize and analyze a simple finite element code, that is, they will know and understand all the sub-components that make up a typical Finite element program.
- The skill to compose a complete finite element code for a one-dimensional engineering problem

Abilities:

• To collect, organize and evaluate interdisciplinary information obtained from various sources

- o To organize scientific information and present it effectively
- o To solve problems in an organized way using brainstorming meetings
- To work in groups, manage meetings, write agenda and minutes

Skills:

- Around organizing interdisciplinary meetings
- Around teamwork, capturing key information, selecting appropriate actions for optimal scientific and technological results

General Competences					
Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma					
Supplement and appear below), at which of the following does the course aim?					
Search for, analysis and synthesis of data and information,	Project planning and management				
with the use of the necessary technology	Respect for difference and multiculturalism				
Adapting to new situations	Respect for the natural environment				
Decision-making	Showing social, professional and ethical responsibility				
Working independently	and sensitivity to gender issues				
Team work	Criticism and self-criticism				
Working in an international environment	Production of free, creative and inductive thinking				
Working in an interdisciplinary environment					
Production of new research ideas	Others				
• Good understanding and treatment of physical	l problems				
• Improving skills in scientific calculations					
 Good understanding and treatment of physical Improving skills in scientific calculations 	l problems				

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Production of free, creative and inductive thinking
- o Team work
- o Decision-making
- Adapting to new situations
- Project planning and management
- o Criticism and self-criticism

(3) SYLLABUS

- Introduction to theory of elasticity (Hooke's law and motion equations)
- The principle of virtual displacements. Strong and weak forms
- The principle on minimum total potential energy
- The Ritz and Galerkin methods
- Finite element mesh, elements, nodes and degrees of freedom,.
- Shape functions and the stiffness matrix of element
- Finite element assembly and the stiffness matrix of the structure
- The Dirichlet boundary conditions
- The static equilibrium problem of one-dimensional elastic bar under axial loads
- Numerical implementation of Finite Element Analysis using the computer program MATLAB

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face in the class Practice in Computer Lab
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory	Use of PC for data and information, preparation of deliverables, communication of the team using email/social media/ecourse platform

(4) TEACHING and LEARNING METHODS - EVALUATION

education, communication with students				
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are	Lectures and Laboratory	26		
described in detail.	Practice	13		
fieldwork study and analysis of	Project and	18		
bibliography, tutorials, placements, clinical	Self-study	18		
practice, art workshop, interactive teaching,				
educational visits, project, essay writing,	Course total	75		
The student's study hours for each learning				
activity are given as well as the hours of non-				
directed study according to the principles of				
the ECTS				
STUDENT PERFORMANCE	LANCHAGE OF EVALUATION: Greek			
FVALUATION		. dreek		
Description of the evaluation procedure	ΜΕΤΉΟΟ ΟΕ ΕΥΔΙ ΠΑΤΙΟΝ:			
Language of evaluation, methods of				
evaluation, summative or conclusive,	• Written work and public presentation			
multiple choice questionnaires, short-	o written work and public presentation			
problem solvina, written work.				
essay/report, oral examination, public				
presentation, laboratory work, clinical				
examination of patient, art interpretation,				
outer Specifically-defined evaluation criteria are				
given, and if and where they are accessible				
to students.				

(5) ATTACHED BIBLIOGRAPHY

Suggested bibliography:

- Παπαδρακάκης, Μ., Ανάλυση φορέων με τη μέθοδο των πεπερασμένων στοιχείων, Εκδόσεις Παπασωτηρίου, Αθήνα 2001
- Τσαμασφύρος, Θεοτόκογλου, Μέθοδος Πεπερασμένων Στοιχείων, Εκδόσεις Συμμετρία, Αθήνα 2005
- Chandrupatla, R., Tipurathi, R., Belegundu, D., Ashok, D, Εκδόσεις ΚΛΕΙΔΑΡΙΘΜΟΣ, Αθήνα 2006